поиска на warning.dp.ua
  

 

Классификация акустических каналов утечки информации


Звуком
называются механические колебание частиц упругой среды (воздуха, воды, металла и т.д.), субъективно воспринимаемые органом слуха. Звуковые ощущения вызываются колебаниями среды, происходящими в диапазоне частот от 16 до 20000 Гц.

Источником образования акустического канала утечки информации являются вибрирующие, колеблющиеся тела и механизмы, такие как голосовые связки человека, движущиеся элементы машин, телефонные аппараты, звукоусилительные системы и т.д. Классификация акустических каналов утечки информации представлена на рис. 1


Рис.1 Классификация акустических каналов

Распространение звука в пространстве осуществляется звуковыми волнами. Упругими, или механическими, волнами называются механические возмущения (деформации), распространяющиеся в упругой среде. Тела, которые, воздействуя на среду, вызывают эти возмущения, называются источниками волн. Распространение упругих волн в среде не связано с переносом вещества. В неограниченной среде оно состоит в вовлечении в вынужденные колебания все более и более удаленных от источника волн частей среды.
Упругая волна является продольной и связана с объемной деформацией упругой среды, вследствие чего может распространяться в любой среде — твердой, жидкой и газообразной.
Когда в воздухе распространяется акустическая волна, его частицы образуют упругую волну и приобретают колебательное движение, распространяясь во все стороны, если на их пути нет препятствий. В условиях помещений или иных ограниченных пространств на пути звуковых волн возникает множество препятствий, на которые волны оказывают переменное давление (двери, окна, стены, потолки, полы и т.п.), приводя их в колебательный режим. Это воздействие звуковых волн и является причиной образования акустического канала утечки информации.
Акустические каналы утечки информации образуются за счет (рис. 2)
• распространение акустических колебаний в свободном воздушном пространстве;
• воздействия звуковых колебаний на элементы и конструкции зданий;
• воздействия звуковых колебаний на технические средства обработки информации.


Рис.2. Образование акустических каналов

    Механические колебания стен, перекрытий, трубопроводов, возникающие в одном месте от воздействия на них источников звука, передаются по строительным конструкциям на значительные расстояния, почти не затухая, не ослабляясь, и излучаются в воздух как слышимый звук. Опасность такого акустического канала утечки информации по элементам здания состоит в большой и неконтролируемой дальности распространения звуковых волн, преобразованных в упругие продольные волны в стенах и перекрытиях, что позволяет прослушивать разговоры на значительных расстояниях.
    Еще один канал утечки акустической информации образуют системы воздушной вентиляции помещений, различные вытяжные системы и системы подачи чистого воздуха. Возможности образования таких каналов определяются конструктивными особенностями воздуховодов и акустическими характеристиками их элементов: задвижек, переходов, распределителей и др.

    В зависимости от физической природы возникновения информационных сигналов, среды распространения акустических колебаний и способов их перехвата, акустические каналы утечки информации также можно разделить на воздушные, вибрационные, электроакустические, оптико-электронные и параметрические.
    • Воздушные каналы. В воздушных технических каналах утечки информации средой распространения акустических сигналов является воздух, а для их перехвата исполь-зуются миниатюрные высокочувствительные микрофоны и специальные направленные микрофоны.
Микрофоны объединяются или соединяются с портативными звукозаписывающими устройствами (диктофонами) или специальными миниатюрными передатчиками.
Перехваченная информация может передаваться по радиоканалу, оптическому каналу (в инфракрасном диапазоне длин волн), по сети переменного тока, соединительным линиям ВТСС, посторонним проводникам (трубам водоснабжения и канализации, металлоконструкциям и т.п.). Причем для передачи информации по трубам и металлоконструкциям могут применяться не только не только электромагнитные, но и механические колебания.
    • Вибрационные каналы. В вибрационных (структурных) каналах утечки информации средой распространения акустических сигналов являются конструкции зданий, сооружений (стены, потолки, полы), трубы водоснабжения, отопления, канализации и другие твёрдые тела. Для перехвата акустических колебаний в этом случае используются контактные микрофоны (стетоскопы).
    • Электроакустические каналы. Электроакустические технические каналы утечки информации возникают за счет электроакустических преобразований акустических сигналов в электрические. Перехват акустических колебаний осуществляется через ВТСС, обладающие “микрофонным эффектом”, а также путем “высокочастотного навязывания”.
    • Оптико-электронный канал. Оптико-электронный (лазерный) канал утечки информации образуется при облучении лазерным лучом вибрирующих в акустическом по-ле тонких отражающих поверхностей (стекол, окон, картин, зеркал и т.д.). Отраженное лазерное излучение (диффузное или зеркальное) модулируется по амплитуде и фазе (по закону вибрации поверхности) и принимается приемником оптического излучения, при демодуляции которого выделяется речевая информация.
    • Параметрические каналы. В результате воздействия акустического поля меняется давление на все элементы высокочастотных генераторов ТСПИ и ВТСС. При этом изменяется (незначительно) взаимное расположение элементов схем, проводов в катушках индуктивности, дросселей и т.п., что может привести к изменениям парамет-ров высокочастотного сигнала, например, к модуляции его информационным сигналом. Поэтому этот канал утечки информации называется параметрическим. Это обусловлено тем, что незначительное изменение взаимного расположения проводов в катушках индуктивности (межвиткового расстояния) приводит к изменению их индуктивности, а, следовательно, к изменению частоты излучения генератора, т.е. к частотной модуляции сигнала. Точно так же воздействие акустического поля на конденсаторы приводит к изменению расстояния между пластинами и, следовательно, к изменению его емкости, что, в свою очередь, также приводит к частотной модуляции высокочастотного сигнала генерации.

     Наиболее часто наблюдается паразитная модуляция информационным сигналом излучений гетеродинов радиоприемных и телевизионных устройств, находящихся в выделенных помещениях и имеющих конденсаторы переменной емкости с воздушным диэлектриком в колебательных контурах гетеродинов. Промодулированные информационным сигналом высокочастотные колебания излучаются в окружающее пространство и могут быть перехвачены и детектированы средствами радиоразведки.

    Параметрический канал утечки информации может быть реализован и путем ВЧ облучения помещения, где установлены полуактивные закладные устройства, имеющие элементы, некоторые параметры которых (например, добротность и резонансная частота объемного резонатора) изменяются по закону изменения акустического (речевого) сигнала.

    При облучении мощным ВЧ сигналом помещения, в котором установлено закладное устройство, в котором при взаимодействии облучающего электромагнитного поля со специальными элементами закладки (например, четвертьволновым вибратором) происходит образование вторичных радиоволн, т.е. переизлучение электромагнитного поля. А специальное устройство закладки (например, объемный резонатор) обеспечивает амплитудную, фазовую или частотную модуляцию переотраженного сигнала по закону изменения речевого сигнала. Такого вида закладки называют полуактивными.

    Акустическая разведка осуществляется перехватом производственных шумов объекта и перехватом речевой информации. В акустической разведке используются:
    • пассивные методы перехвата;
    • активные методы перехвата;
    • контактные методы перехвата.

    По способу применения технические средства съема акустической информации можно классифицировать следующим образом.

Беззаходовые методы

      Аппаратура, использующая микрофонный эффект телефонных аппаратов
Прослушивание помещений через телефон осуществляется за счет использования “микрофонного эффекта”. Недостаток метода состоит в том, что “микрофонным эффектом” обладают старые модели телефонных аппаратов, которые сейчас применяются редко.

Аппаратура ВЧ навязывания

    ВЧ колебания проходят через микрофон или детали телефона, обладающие “микрофонным эффектом” и модулируются в акустический сигнал из помещения, где установлен телефонный аппарат. Промодулированый сигнал демодулируется амплитудным детектором и после усиления подается на регистрирующее устройство.
    Как микрофон может работать и здание. Направленное на него излучение соответствующей частоты модулируется (изменяется) специальными конструктивными элементами, которые способны улавливать звуковые колебания, возникающие при разговоре. Таким образом, отраженное от здания излучение в измененном виде несет с собой информацию о том, что было произнесено внутри.
    Ток на микрофоне максимален, когда напряжение стремится к нулю. Ток протекает через микрофон и модулиется по закону низкой частоты, а поскольку линия в трубке далеко не идеальна, то основная часть энергии из линии преобразуется в электромагнитные колебания и излучеся в эфир.
    Этот канал утечки речевой информации представляет опасность еще и с точки зрения сложности его обнаружения службой безопасности объекта.     Поскольку уровни излучений очень малы, зафиксировать их без составления радиокарты практически нереально. Принять сигнал без специального приемного устройства также не представляется возможным. Все существующие системы защиты при данном методе съема неэффективны. Например, шунтирование микрофона емкостью только улучшает определение резонансной характеристики, т.к. в точке пучности тока напряжение равно нулю, и конденсатор не работает.

Стетоскопы

   Стетоскопы — это устройства, преобразующие упругие механические колебания твердых физических сред в акустический сигнал. В современных стетоскопах в качестве такого преобразователя служит пьезодатчик. Данная аппаратура в основном применяется для прослушивания соседних помещений через стены, потолки, пол или через трубы центрального отопления. Профессиональная аппаратура этого класса компактна (помещается в кейсе средних размеров), автономна, имеет возможность подстройки параметров под конкретную рабочую обстановку, осуществляет запись полученной информации на диктофон. Стетоскопические датчики часто дооборудуются радиопередатчиком, что позволяет прослушивать перехваченную информацию на сканирующий приемник, как от обычной радиозакладки.

Лазерные стетоскопы

   Лазерные стетоскопы — это устройства, позволяющие считывать лазерным лучом вибрацию с предметов, промодулированых акустическим сигналом. Обычно акустическая информация снимается с оконных стекол. Современные лазерные стетоскопы хорошо работают на дальности до 300 м. Недостатками этой аппаратуры являются высокая стоимость (до 30 тыс. долларов), необходимость пространственного разноса источника и приемника лазерного излучения, сильная зависимость качества работы от внешних условий (метеоусловия, солнечные блики и т.д.).

Направленные акустические микрофоны (НАМ)

Данная техника предназначена для прослушивания акустической информации с определенного направления и с больших расстояний. В зависимости от конструкции НАМ, ширина главного луча диаграммы направленности находится в пределах 5–30°, величина коэффициента усиления 5–20. По типу используемых антенных систем НАМ бывают:

• Зеркальные (микрофон НАМ находится в фокусе параболической антенны). Расстояние 500 метров и более, диаметр зеркала составляет до 1 м.

• Микрофон-трубка (обычно маскируется под трость или зонт), при этом дальность действия до 300 метров, а диаграмма направленности — до 18. При повышении уровня шумов до 60 дБ дальность снижается до 100 метров.

• Направленные аккустические микрофоны органного типа (большие мобильные или стационарные установки, в частно-сти, применяемые в пограничных войсках для прослушивания акустических сигналов с сопредельной территории и др.), позволяет осуществлять прослушивание до 1000 м.

• Плоские направленные аккустические микрофоны, использующие в качестве антенной системы фазированную антенную решетку (ФАР), обычно маскируются под кейс, в крышку которого монтируется ФАР.

    Акустическая разведка методом пассивного перехвата основана на перехвате акустической волны направленными микрофонами.
    Акустические методы перехвата — облучение колеблющихся предметов в УФ и ИК диапазонах, оптическим лазерным стетоскопом. Используется также облучение радиолучом, но при этом устойчивый прием информации возможен на расстоянии 300–400 метров. Ультразвуковой съем информации возможен во всех направлениях из-за широкой диаграммы направленности антенной системы и на расстоянии
300 метров.

    Контактные методы — это закладные устройства:
• радиомикрофоны непрерывного действия;
• радиомикрофоны с выключением питания;
• радиомикрофоны с управлением по радио;
• радиомикрофоны с дистанционным питанием;
• стетоскопы.

    Осуществляется съем речевой информации по следующим цепям:
• звонковая цепь;
• реле;
• съем информации с измерительной головки вольтметров и амперметров;
• система радиотрансляции;
• система электрочасофикации;
• система пожарной и охранной сигнализации.

Заходовые методы

     Перехват акустической информации с помощью радиопередающих средств
К ним относится широкая номенклатура радиозакладок (радиомикрофонов, “жучков”), назначением которых является передача по радиоканалу акустической информации, получаемой на объекте.
Применение радиопередающих средств предполагает обязательное наличие приемника, с помощью которого осуществляется прием информации от радиозакладки. Приемники используются разные — от бытовых (диапазон 88–108 МГц) до специальных. Иногда применяются так называемые автоматические станции. Они предназначены для автоматической записи информации в случае ее появления на объекте.

     Перехват акустической информации с помощью ИК передатчиков
Передача информации может осуществляется по ИК каналу. Акустические закладки данного типа характеризуются крайней сложностью их обнаружения. Срок работы этих изделий — несколько суток, но следует иметь в виду, что прослушать их передачу можно лишь на спецприемнике и только в прямом визуальном контакте, т.е. непосредственно видя эту закладку. Поэтому размещаются они у окон, вентиляционных отверстий и т.п., что облегчает задачу их поиска. Основное достоинство этих закладок — скрытность их работы.

     Закладки, использующие в качестве канала передачи акустической информации сеть 220 В и телефонные линии
Сходство этих закладок в том, что они используют в своей работе принцип низкочас-тотного уплотнения канала передачи информации. Поскольку в “чистых” линиях (220 В) и телефонных линиях присутствуют только сигналы на частотах 50 Гц и 300–3500 Гц соответственно, то передатчики таких закладок, транслируя свою информацию на частотах 100–250 кГц, не мешают работе этих сетей. Подключив к этим линиям спецприемники, можно снимать передаваемую с закладки информацию на дальность до 500 м.

     Диктофоны
Диктофоны — устройства, записывающие голосовую информацию на магнитный носитель (ленту, проволоку, внутреннюю микросхему памяти). Время записи различных диктофонов колеблется в пределах от 15 мин до 8 ч.
Современные цифровые диктофоны записывают информации во внутреннюю память, позволяющую производить запись разговора длительностью до нескольких часов. Эти диктофоны практически бесшумны (т.к. нет ни кассеты, ни механического лентопротяжного механизма, производящих основной шум), имеют возможность сброса запи-санной информации в память компьютера для ее дальнейшей обработки (повышения разборчивости речи, выделения полезных фоновых сигналов и т.д.).

     Проводные микрофоны
Проводные микрофоны устанавливаются в интересующем помещении и соединяются проводной линией с приемным устройством. Микрофоны устанавливаются либо скрытно (немаскированые), либо маскируются под предметы обихода, офисной техники и т.д. Такие системы обеспечивают передачу аудиосигнала на дальность до 20 м. При использовании активных микрофонов — до 150 м. Несколько микрофонов могут заводиться на общее коммутирующее устройство, позволяющее одновременно контролировать несколько помещений и осуществляющее запись перехваченных разговоров на диктофон.

     “Телефонное ухо”
Данное устройство обычно скрытно монтируется либо в телефоне, либо в телефонной розетке. Работает оно следующим образом. Человек, который хочет воспользоваться данным устройством (оператор), производит телефонный звонок по номеру, на котором оно “висит”. “Телефонное ухо” (“ТУ”) “проглатывает” первые два звонка, т.е. в контролируемом помещении телефонные звонки не раздаются. Оператор кладет трубку и опять набирает этот номер. В трубке будет звучать сигнал “занято”, оператор ждет 30-60 с (временной пароль) и после прекращения сигнала “занято” набирает бипером (генератором DTMF-посылок) заданную кодовую комбинацию (цифровой пароль). После этого включается микрофон “ТУ” и оператор слышит все, что происходит в контролируемом помещении практически из любой точки мира, где есть телефонный аппарат. Разрыв связи произойдет, если оператор положит трубку или если кто-то поднимет телефонную трубку в контролируемом помещении. Для всех остальных абонентов, желающих дозвониться по этому номеру, будет слышен сигнал “занято”. Данный алгоритм работы является типовым, но может отличаться в деталях реализации, в зависимости от требований


Читайте также:

SelectorNews
 

     быстрая навигация по порталу   <СПРАВОЧНИК ПО БЕЗОПАСНОСТИ>
способы выживания личная безопасность корпоративная безопасность безопасность средств связи
дорожная безопасность агентура и сбор информации компьютерная безопасность сексуальная безопасность
 


 



Реклама:

Реклама на портале WARNING.dp.ua

Исходя из безусловного права личности на собственную безопасность всем предоставляется право свободного копирования, распространения
и издания этих материалов, как в полном объеме, так и по частям в любых комбинациях!

KMindex Rambler's Top100

Fresh news about Max Polyakov by this link